Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models

نویسندگان

  • Michelle S F Tan
  • Aaron P White
  • Sadequr Rahman
  • Gary A Dykes
چکیده

Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enteri...

متن کامل

Cinnamaldehyde, Carvacrol and Organic Acids Affect Gene Expression of Selected Oxidative Stress and Inflammation Markers in IPEC‐J2 Cells Exposed to Salmonella typhimurium

Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects of cinnamaldehyde, carvacrol and cinnamic, lactic and propionic acids on the ability of Salmonella typhimur...

متن کامل

FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium.

Salmonella enterica serovar Typhimurium produces two types of filamentous appendages on its surface. Fimbriae mediate adherence to tissues and cells via receptor-specific interactions, and flagella are the organelles of motility. These appendages play a role in colonization and dissemination, respectively, from infected surfaces and may be important components of bacterial survival. Increased e...

متن کامل

Antibody selection for immobilizing living bacteria.

We report a comparative study of the efficacy of immobilizing living bacteria by means of seven antibodies against bacterial surface antigens associated with Salmonella enterica Serovar Typhimurium. The targeted bacterial antigens were CFA/I fimbriae, flagella, lipopolysaccharides (LPS), and capsular F1 antigen. The best immobilization of S. Typhimurium was achieved with the antibody against CF...

متن کامل

Role of yqiC in the Pathogenicity of Salmonella and Innate Immune Responses of Human Intestinal Epithelium

The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium) regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacteria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016